
denzel Documentation
Release 0.1.5

Elior Cohen

Jan 26, 2019





Contents:

1 Introduction 3

2 Tutorial 7

3 Pipeline Methods 27

4 API Endpoints 29

5 Command Line Interface (CLI) 31

6 Showcase 35

7 Development State 39

HTTP Routing Table 41

i



ii



denzel Documentation, Release 0.1.5

Denzel is a model-agnostic lean framework for fast and easy API deployment of machine learning models.
Denzel is data scientist first; while it leverages production grade tools and practices, its main goal is to abstract the
mechanics from the data scientist allowing model deployment with ease.

Warning: Denzel only works on Linux environment at the moment. Windows support will be added - keep
yourself updated by checking the development state for new features and support.

Contents: 1

https://github.com/eliorc/denzel


denzel Documentation, Release 0.1.5

2 Contents:



CHAPTER 1

Introduction

Denzel was designed by data scientists for data scientists.
The framework utilizes production grade tools and practices to allow quick deployment, while abstracting all the
mechanics behind the scenes.
To launch a service with API interface, task queue management and monitoring the only thing required from the data
scientist is to fill four functions, and denzel will take care of the rest.
Those four functions are pipeline.load_model(), pipeline.verify_input(),
pipeline.process() and pipeline.predict() (also called Pipeline Methods).

1.1 Motivation

Data scientists are not necessarily software engineers. In most companies’ structure the data science team is
separated from the other engineering teams.
In a standard workflow the data science team will get some data and a problem to solve. The team will then iterate
until the point where they believe their solution is worthy and will want to test it out in production environment.
Once this point is reached it is not guaranteed that the engineering teams will have the availability to wrap the
solution (model) with a deployment system.

Denzel was created to fill this necessity, to create a framework where a data scientist could deploy a model, in a fast
and reliable way.
Need to deploy? Denzel got your back.

1.2 Architecture and Task Flow

Under the hood denzel uses four docker containers and the system overview is as follows:

3

https://www.docker.com/


denzel Documentation, Release 0.1.5

Fig. 1: High level overview of the denzel architecture. Each box is a container (API, Redis, denzel and Monitor). In
orange is the main container, where the model will reside. On top of each container we can see the functions that will
need to be implemented by the data scientist

4 Chapter 1. Introduction



denzel Documentation, Release 0.1.5

Each box, is a docker container with its own purpose.
The API exposes three endpoints to the user, the /predict, /status/{task_id} and /info endpoints.

On system startup (denzel start) a worker inside the denzel container will use the
pipeline.load_model() function to load the model into memory, and will keep it there until the worker shuts
down (should happen only when the system is shut down).
The worker, is always listening for tasks in the queue, which is inside the Redis container.
When an end-user sends a POST request to the /predict endpoint, the request will first go through the
pipeline.verify_input() function to make sure the schema is as expected by denzel (defined by the data
scientist).
If all is well, the request is turned into a task and is sent into the task queue and a response will be sent back to the
user with a task ID.
As the task enters the queue, if the worker is not already busy it will consume the task. The task then goes through
the pipeline.process() function, which accepts the output of the pipeline.verify_input() function
and parses it to model-ready data.
If processing is successful, the model-ready data enters the pipeline.predict() function where all the model
magic happens and then a response with the prediction will be sent to a callback_uri which was supplied by the
end-user initially.
At any time during the lifetime of a task, the end-user can view its status through the /status/{task_id} endpoint, or
through the built-in UI exposed by the Monitor container.

Note: By default, denzel will run tasks on parallel, one task per core - for example if the host has 8 cores, that means
8 tasks can be executed in parallel.

Fig. 2: API request flow through the four methods

1.3 Tasks and Synchrony

Denzel separates tasks from predictions jobs. This is so denzel can support batching, where in one task multiple
prediction jobs will be sent.
Consider the following request-body (as JSON) sent by an end-user:

1.3. Tasks and Synchrony 5



denzel Documentation, Release 0.1.5

{
"callback_uri": "http://alonzo.trainingday.com/stash",
"data": {"predict_id_1": {"feature1": 0.45, "feature2": -1.99},

"predict_id_2": {"feature1": 0.09, "feature2": -6.15}}
}

As a response, the end-user will be returned:

{
"task_id": "1ba0dccre8d67dsa",
"status": "SUCCESS"

}

Note: The "status": "SUCCESS" means the task has been accepted - not that there was a prediction made
yet. Essentially it means the request has passed the pipeline.verify_input() method and has made it into
the queue

Here we have a task submitted by the user with two separate prediction jobs.
If all goes well, as the end-user sends the request it will synchronously get a response with a task ID, uniquely
identifying the task submitted.
After the data has been processed and the prediction has been made, an asynchronous response will be sent back to
the callback_uri and will look something like this:

{
"predict_id_1": "hotdog",
"predict_id_2": "not_hotdog"

}

1.3.1 Why Async Responses?

The use of asynchronous responses is very common in API services.
Denzel, does not want to limit the data scientist and understands that processing and prediction (espcially of batches)
might take longer than the end-user response waiting timeout.
Using asynchronous responses, the system virtually unlimited in time it takes to return a response, even though it’s
recommended to respond as fast as possible.

6 Chapter 1. Introduction



CHAPTER 2

Tutorial

A step by step tutorial for installing and launching a denzel deployment.
For this tutorial we will train and deploy a Iris classifier, based on the Iris dataset.

2.1 Prerequisites

Python 3 and docker are necessary for denzel.
Optionally, you can set up a virtualenv.

1. Install docker, verify its installation by running

$ docker --version
Docker version 18.06.1-ce, build e68fc7a

2. Install docker-compose > 1.19.0, verify its installation by running

$ docker-compose --version
docker-compose version 1.22.0, build f46880fe

3. User must be a part of the docker group (be able to run docker commands without sudo). Details on how
to achieve that can be found in the official docs.

4. (Optional) Install virtualenv and create one to work on.

Note:

If opting for virtualenv understand that the deployment will not be using this env - it will only be used to install
denzel on it.
The deployment itself will use the interpreter and packages installed into the containers (more on this further down).

7

https://archive.ics.uci.edu/ml/datasets/Iris
https://virtualenv.pypa.io/en/stable/
https://docs.docker.com/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/install/linux/linux-postinstall/#manage-docker-as-a-non-root-user
https://virtualenv.pypa.io/en/stable/installation/


denzel Documentation, Release 0.1.5

2.2 Installation

If you are using a virtualenv, make sure you have it active.
To install denzel, simply run

$ pip install denzel

After this command completes, you should have the denzel Command Line Interface (CLI) available.
Once available you can always call denzel --help for the help menu.

2.3 Toy Model

Before actually using denzel, we need a trained model saved locally.
If you already have one, you can skip this sub-section.

For this tutorial, we are going to use scikit-learn’s default SVM classifier and train it on the Iris dataset.
The following script downloads the dataset, trains a model and saves it to disk

import pandas as pd
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
import pickle

# -------- Load data --------
IRIS_DATA_URL = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.
→˓data"
IRIS_DATA_COLUMNS = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width',
→˓'class']

iris_df = pd.read_csv(IRIS_DATA_URL,
names=IRIS_DATA_COLUMNS)

# -------- Spit train and test --------
features, labels = iris_df.values[:, 0:4], iris_df.values[:, 4]

test_fraction = 0.2
train_features, test_features, train_labels, test_labels = train_test_split(

features, labels,
test_size=test_fraction)

# -------- Train and evaluate --------
model = SVC()
model.fit(X=train_features, y=train_labels)

print(model.score(X=test_features, y=test_labels))
>> 0.9666666666666667

(continues on next page)

8 Chapter 2. Tutorial

http://scikit-learn.org/stable/modules/svm.html#svm-classification
https://archive.ics.uci.edu/ml/datasets/Iris


denzel Documentation, Release 0.1.5

(continued from previous page)

# -------- Save for later --------
SAVED_MODEL_PATH = '/home/creasy/saved_models/iris_svc.pkl'
with open(SAVED_MODEL_PATH, 'wb') as saved_file:

pickle.dump(
obj=model,
file=saved_file)

Great, we have a model trained to populate the deployment!

2.4 Starting a denzel Project

To start a project, you first have to run the command startproject, as a result denzel will build for you the following
skeleton

Note:

Denzel supports GPU deployments. If you are going to run your deployment on a GPU, make sure you install
nvidia-docker and use the --gpu flag.

$ denzel startproject iris_classifier
Successfully built iris_classifier project skeleton
$ cd iris_classifier
$ tree
.
|-- Dockerfile
|-- __init__.py
|-- app
| |-- __init__.py
| |-- assets
| | `-- info.txt <-------------------------- Deployment information
| |-- logic
| | |-- __init__.py
| | `-- pipeline.py <----------------------- Pipeline Methods
| `-- tasks.py
|-- docker-compose.yml
|-- entrypoints
| |-- api.sh
| |-- denzel.sh
| `-- monitor.sh
|-- logs
`-- requirements.txt <-------------------------- Requirements

To make denzel fully operational, the only files we’ll ever edit are:
1. requirements.txt - Here we’ll store all the pip packages our system needs
2. app/assets/info.txt - Text file that contains deployment information about our model and system
3. app/logic/pipeline.py - Here we will edit the body of the Pipeline Methods

2.4. Starting a denzel Project 9

https://github.com/NVIDIA/nvidia-docker


denzel Documentation, Release 0.1.5

These steps, are exactly what this tutorial is all about.

Tip:

A good practice will be to edit only the body of functions in pipeline.py and if you wish to add your own custom
functions that will be called from within pipeline.py, you should put them on a separate file inside the
app/logic directory and import them.

2.5 Requirements

When we’ve built our toy model, we used scikit-learn so before anything we want to specify this requirement
in the requirements.txt file.
Open your favorite file editor, and append scikit-learn, numpy and scipy as requirements - don’t forget to
leave a blank line in the end.
Your requirements.txt should look like this

# ---------------------------------------------------------------
# USER GUIDE
# Remember this has to be a lightweight service;
# Keep that in mind when choosing which libraries to use.
# ---------------------------------------------------------------
scikit-learn
numpy
scipy

Take heed to the comment at the top of the file. Keep your system as lean as possible using light packages and
operations in the pipeline methods.

2.6 Define Interface (API)

Our end users will need to know what is the JSON scheme our API accepts, so we will have to define what is the
accepted JSON scheme for the /predict endpoint.
In our toy model, we have four features the model expects: ‘sepal-length’, ‘sepal-width’, ‘petal-length’ and
‘petal-width’.
Since we are going to return an async response, we also need to make sure we include a callback URI in the scheme.
Finally we’ll want to support batching, so the following JSON scheme should suffice

{
"callback_uri": <callback_uri>,
"data": {<unique_id1>: {"sepal-length": <float>,

"sepal-width": <float>,
"petal-length": <float>,
"petal-width": <float>},

(continues on next page)

10 Chapter 2. Tutorial



denzel Documentation, Release 0.1.5

(continued from previous page)

<unique_id2>: {"sepal-length": <float>,
"sepal-width": <float>,
"petal-length": <float>,
"petal-width": <float>},

...}
}

Also let’s include a documentation of this interface and the model version in our app/assets/info.txt file that
will be available to the end user in the /info endpoint.
For example we might edit info.txt to something like this

# ===================== DEPLOYMENT ======================

v0.1.5

# ======================== MODEL ========================

Model information:
Version: 1.0.0
Description: Iris classifier

For prediction, make a POST request for /predict matching the following scheme

{
"callback_uri": "http://alonzo.trainingday.com/stash",
"data": {<unique_id1>: {"sepal-length": <float>,

"sepal-width": <float>,
"petal-length": <float>,
"petal-width": <float>},

<unique_id2>: {"sepal-length": <float>,
"sepal-width": <float>,
"petal-length": <float>,
"petal-width": <float>},

...}
}

Looks great, now end users can see this info using GET requests!

2.7 Launch (partial project)

In an ideal scenario, we would launch a project only after we have completed all necessary tasks for a full
deployment.

2.7. Launch (partial project) 11

http://alonzo.trainingday.com/stash


denzel Documentation, Release 0.1.5

For guidance and simplicity sake of this tutorial, we will launch a partial project and complete tasks gradually.

What we have now is a skeleton, an editted info.txt and requirements.txt files and we can launch our API,
without the functionality of the /predict endpoint (yet).
Inside project directory run:

$ denzel launch

Creating network "iris_classifier_default" with the default driver
Pulling redis (redis:4)...
4: Pulling from library/redis
802b00ed6f79: Pull complete
8b4a21f633de: Pull complete
92e244f8ff14: Pull complete
fbf4770cd9d6: Pull complete
.
.

Note: By default denzel will occupy port 8000 for the API and port 5555 for monitoring. If one of them is taken,
denzel will let you know and you can opt for other ports - for more info check the launch command documentation.

If this is the first time you launch a denzel project, the necessary docker images will be downloaded and built.
What is going on in the background is necessary for building the containers that will power the deployment.

If you are not really familiar with docker you can think of images like classes in programming, they define the
structure of an object, and containers are like the instances.
In the context of docker the objects the images define are actually virtual machines and the containers we create from
them is where our code will run on.

This whole process might take a few minutes, so sit back and enjoy an Oscar winning performance by the man
himself.

Once done if everything went right you should see the end of the output looking like this:

Starting redis ... done
Starting api ... done
Starting denzel ... done
Starting monitor ... done

This indicates that all the containers (services) were created and are up.
Once they are up the services will start installing the packages we specified in requirements.txt, you can view
the status of the services by using the status command, optionally with the --live flag.
If you would run it right away you’d expect to see:

12 Chapter 2. Tutorial

https://youtu.be/6KrNpxODiDA
https://youtu.be/6KrNpxODiDA


denzel Documentation, Release 0.1.5

$ denzel status
Services:

denzel - PIP INSTALLING...
monitor - PIP INSTALLING...
api - PIP INSTALLING...
redis - UP

When all the installing is done and everything is ready, you’ll see all the statuses change to UP with an additional line
Worker: worker@iris_classifier - UP indicating the worker is ready.
If you want to see the messages printed out throughout the installation, you can use the logs command.
At any time during the lifetime of your project, if you want to add more pip packages, just insert them to the
requirements.txt file and use the updatereqs command.

Tip:

Using the denzel status --live command is a great way to monitor the system. When conducting
installations and loading it is a great way to get a high level live view of the system.
For lower level view, examining the outputs of the containers, use the live view of the logs using denzel logs
--live.

For sanity check, assuming you have deployed locally, open your favorite browser and go to
http://localhost:8000/info . You should see the contents of info.txt (assuming all services are up).
At any time, you can stop all services using the stop command and start them again with the start command.
From this moment forward we shouldn’t use the launch command as a project can and needs to be launched once.
If for any reason you wish to relaunch a project (for changing ports for example) you’d have to first shutdown and
then launch again.

2.8 Pipeline Methods

Now is the time to fill the body of the pipeline methods. They are all stored inside app/logic/pipeline.py.
Open this file in your favorite IDE as we will go through the implementation of these methods.

2.8.1 verify_input

When a user makes a request, the first pipeline method that the request will meet is verify_input.
The verify_input method is responsible for making sure the JSON data received matches the interface we defined.
In order to do that, lets edit the verify_input method to do just that:

FEATURES = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width']

def verify_input(json_data):
"""
Verifies the validity of an API request content

(continues on next page)

2.8. Pipeline Methods 13

http://localhost:8000/info


denzel Documentation, Release 0.1.5

(continued from previous page)

:param json_data: Parsed JSON accepted from API call
:type json_data: dict
:return: Data for the the process function
"""

# callback_uri is needed to sent the responses to
if 'callback_uri' not in json_data:

raise ValueError('callback_uri not supplied')

# Verify data was sent
if 'data' not in json_data:

raise ValueError('no data to predict for!')

# Verify data structure
if not isinstance(json_data['data'], dict):

raise ValueError('jsondata["data"] must be a mapping between unique id and
→˓features')

# Verify data scheme
for unique_id, features in json_data['data'].items():

feature_names = features.keys()
feature_values = features.values()

# Verify all features needed were sent
if not all([feature in feature_names for feature in FEATURES]):

raise ValueError('For each example all of the features [{}] must be
→˓present'.format(FEATURES))

# Verify all features that were sent are floats
if not all([isinstance(value, float) for value in feature_values]):

raise ValueError('All feature values must be floats')

return json_data

In the verification process implementation, you may throw any object that inherits from Exception and the
message attached to it will be sent back to the user in case he tackles that exception.

14 Chapter 2. Tutorial



denzel Documentation, Release 0.1.5

Tip: For JSON scheme verification, you can consider using the jsonschema library.

2.8.2 load_model

load_model is the method responsible for loading our saved model into memory and will keep it there as long as the
worker lives.
This method is called when denzel starts up and is called only once - unlike verify_input, process and predict which
are called one time per request.
So our model will be accessible for reading, we must copy it into the project directory, preferably to app/assets.
Once copied there, the assets directory should be as follows:

$ cd app/assets/
$ ls -l

total 8
-rw-rw-r-- 1 creasy creasy 1623 Sep 14 14:35 info.txt
-rw-rw-r-- 1 creasy creasy 3552 Sep 14 08:55 iris_svc.pkl

Now if we’ll look at app/logic/pipeline.py we will find the skeleton of load_model.
Edit it so it loads the model and returns it, it should look something like:

import pickle

.

.

def load_model():
"""
Load model and its assets to memory
:return: Model, will be used by the predict and process functions
"""

(continues on next page)

2.8. Pipeline Methods 15

https://github.com/Julian/jsonschema


denzel Documentation, Release 0.1.5

(continued from previous page)

with open('./app/assets/iris_svc.pkl', 'rb') as model_file:
loaded_model = pickle.load(model_file)

return loaded_model

Note:

When using paths on code which is executed inside the containers (like the pipeline methods) the current directory is
always the project main directory (where the requirements.txt is stored). Hence the saved model prefix above
is ./app/assets/....

When we edit the pipeline methods, the changes do not take effect until we restart the services.
As we just edited a pipeline method, we should run the restart command so the changes apply.
Navigate back into the project main directory and run denzel restart and after the services have restarted the
changes will take effect.
To verify all went well you can examine the logs by running the logs command - if anything went wrong we will see
it there (more about that in Debugging).

Warning:

When loading heavy models (unlike the tutorial classifier) that take long time to be read, you might want to wait
for it to load before making any requests.
To do that, you should watch the output of the status command and check if your worker is ready, optionally with
the --live flag. If your model is indeed taking much time to load, the output should like like follows:

$ denzel status

Services:
denzel - UP
monitor - UP
api - UP
redis - UP

Worker: all - LOADING...

This means all the services are up, but API endpoints (as well as monitoring) are not available yet as the worker is
still loading.

2.8.3 process

The output of the verify_input and load_model methods are the input to the process method.
The model object itself is not always necessary, but it is there if you want to have some kind of loaded resource
available for the processing, in this tutorial we won’t use the model in this method.

Now we are in possession of the JSON data, and we are already sure it has all the necessary data for making
predictions.

16 Chapter 2. Tutorial



denzel Documentation, Release 0.1.5

Our model though, does not accept JSON, it expects four floats as input, so in this method we will turn the JSON data
into model-ready data.
For our use case, we should edit the function to look as follows:

.

.
import numpy as np
.
.

def process(model, json_data):
"""
Process the json_data passed from verify_input to model ready data

:param model: Loaded object from load_model function
:param json_data: Data from the verify_input function
:return: Model ready data
"""

# Gather unique IDs
ids = json_data['data'].keys()

# Gather feature values and make sure they are in the right order
data = []
for features in json_data['data'].values():

data.append([features[FEATURES[0]], features[FEATURES[1]],
→˓features[FEATURES[2]], features[FEATURES[3]]])

data = np.array(data)
"""
data = [[float, float, float, float],

[float, float, float, float]]
"""

return ids, data

2.8.4 predict

The output of process and load_model are the input to the predict method.

2.8. Pipeline Methods 17



denzel Documentation, Release 0.1.5

The final part of a request lifecycle is the actual prediction that will be sent back as response.
In our example in order to do that we would edit the method to look as follows:

def predict(model, data):
"""
Predicts and prepares the answer for the API-caller

:param model: Loaded object from load_model function
:param data: Data from process function
:return: Response to API-caller
:rtype: dict
"""

# Unpack the outputs of process function
ids, data = data

# Predict
predictions = model.predict(data)

# Pack the IDs supplied by the end user and their corresponding predictions in a
→˓dictionary

response = dict(zip(ids, predictions))

return response

Warning: The returned value of the predict function must be a dictionary and all of its contents must be JSON
serializable. This is necessary because denzel will parse it into JSON to be sent back to the end user.

And. . . That’s it! Denzel is ready to be fully operational.
Don’t forget, after all these changes we must run denzel restart so they will take effect.
For reference, the full pipeline.py file should look like this

import pickle
import numpy as np

(continues on next page)

18 Chapter 2. Tutorial



denzel Documentation, Release 0.1.5

(continued from previous page)

FEATURES = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width']

# -------- Handled by api container --------
def verify_input(json_data):

"""
Verifies the validity of an API request content

:param json_data: Parsed JSON accepted from API call
:type json_data: dict
:return: Data for the the process function
"""

# callback_uri is needed to sent the responses to
if 'callback_uri' not in json_data:

raise ValueError('callback_uri not supplied')

# Verify data was sent
if 'data' not in json_data:

raise ValueError('no data to predict for!')

# Verify data structure
if not isinstance(json_data['data'], dict):

raise ValueError('jsondata["data"] must be a mapping between unique id and
→˓features')

# Verify data scheme
for unique_id, features in json_data['data'].items():

feature_names = features.keys()
feature_values = features.values()

# Verify all features needed were sent
if not all([feature in feature_names for feature in FEATURES]):

raise ValueError('For each example all of the features [{}] must be
→˓present'.format(FEATURES))

# Verify all features that were sent are floats
if not all([isinstance(value, float) for value in feature_values]):

raise ValueError('All feature values must be floats')

return json_data

# -------- Handled by denzel container --------
def load_model():

"""
Load model and its assets to memory

:return: Model, will be used by the predict and process functions
"""
with open('./app/assets/iris_svc.pkl', 'rb') as model_file:

loaded_model = pickle.load(model_file)

return loaded_model

def process(model, json_data):
"""

(continues on next page)

2.8. Pipeline Methods 19



denzel Documentation, Release 0.1.5

(continued from previous page)

Process the json_data passed from verify_input to model ready data

:param model: Loaded object from load_model function
:param json_data: Data from the verify_input function
:return: Model ready data
"""

# Gather unique IDs
ids = json_data['data'].keys()

# Gather feature values and make sure they are in the right order
data = []
for features in json_data['data'].values():

data.append([features[FEATURES[0]], features[FEATURES[1]],
→˓features[FEATURES[2]], features[FEATURES[3]]])

data = np.array(data)

return ids, data

def predict(model, data):
"""
Predicts and prepares the answer for the API-caller

:param model: Loaded object from load_model function
:param data: Data from process function
:return: Response to API-caller
:rtype: dict
"""

# Unpack the outputs of process function
ids, data = data

# Predict
predictions = model.predict(data)

# Pack the IDs supplied by the end user and their corresponding predictions in a
→˓dictionary

response = dict(zip(ids, predictions))

return response

2.9 Using the API to Predict

Now is the time to put denzel into action.
To do that, we must first have some URI to receive the responses (remember, we are using async responses).
You can do that by using waithook which is an in browser service for receiving HTTP requests, just what we need -
just follow the link, choose a “Path Prefix” (for example john_q and press “Subscribe”.
Use the link that will be generated for you (http://waithook.com/<chosen_path_prefix>) and keep the browser open
as we will receive the responses to the output window.
Next we need to make an actual POST request to the /predict endpoint. We will do that using curl through the
command line.

20 Chapter 2. Tutorial

http://waithook.com/
http://waithook.com
https://curl.haxx.se/docs/manual.html


denzel Documentation, Release 0.1.5

Tip:

There are more intuitive ways to create HTTP requests than curl. For creating requests through UI you can either use
Postman, or through Python using the requests package.

Let’s launch a predict request, for two examples from the test set:

Bash

$ curl --header "Content-Type: application/json" \
> --request POST \
> --data '{"callback_uri": "http://waithook.com/john_q",'\
> '"data": {"a123": {"sepal-length": 4.6, "sepal-width": 3.6, "petal-length": 1.0,
→˓"petal-width": 0.2},'\
> '"b456": {"sepal-length": 6.5, "sepal-width": 3.2, "petal-length": 5.1, "petal-width
→˓": 2.0}}}' \
http://localhost:8000/predict

Python

import requests

data = {
"callback_uri": "http://waithook.com/john_q",
"data": {"a123": {"sepal-length": 4.6, "sepal-width": 3.6, "petal-length": 1.0,

→˓"petal-width": 0.2},
"b456": {"sepal-length": 6.5, "sepal-width": 3.2, "petal-length": 5.1,

→˓"petal-width": 2.0}}
}

response = requests.post('http://localhost:8000/predict', json=data)

If the request has passed the verify_input method, you should immediately get a response that looks something like
(on curl, you’d see it in your prompt, with requests you’ll have it in response.json()):

{"status":"success","data":{"task_id":"19e39afe-0729-43a8-b4c5-6a60281157bc"}}

This means that the task has passed verification successfully, already entered the task queue and will next go through
process and predict.
At any time, you can view the task status by sending a GET request to the /status/{task_id} endpoint.
If you examine waithook in your browser, you will see that a response was already sent back with the prediction, it
should looks something like:

{
"method": "POST",
"url": "/john_q",

(continues on next page)

2.9. Using the API to Predict 21

https://curl.haxx.se/docs/manual.html
https://www.getpostman.com/
http://docs.python-requests.org/en/master/


denzel Documentation, Release 0.1.5

(continued from previous page)

"headers": {
"User-Agent": "python-requests/2.19.1",
"Connection": "close",
"X-Forwarded-Proto": "http",
"Accept": "*/*",
"Accept-Encoding": "gzip, deflate",
"Content-Length": "49",
"Content-Type": "application/json",
"Host": "waithook.com",
"X-Forwarded-for": "89.139.202.80"

},
"body": "{\"a123\": \"Iris-setosa\", \"b456\": \"Iris-virginica\"}"

}

In the "body" section, you can see the returned predictions.
If you got this response it means that all went well and your deployment is fully ready.

2.10 Monitoring

Denzel comes with a built in UI for monitoring the tasks and workers.
To use it, once the system is up go to the monitor port (defaults to 5555) on the deployment domain. If deployed
locally open your browser and go to http://localhost:5555
You will be presented with a UI that looks something like:

Fig. 1: Example of Flower’s monitoring UI

This dashboard is generated by Flower, and gives you access to examine the worker status, tasks status, tasks time
and more.

2.11 Debugging

Life is not all tutorials and sometime things go wrong.

22 Chapter 2. Tutorial

http://localhost:5555
https://flower.readthedocs.io/en/latest/


denzel Documentation, Release 0.1.5

Debugging exceptions is dependent of where the exception is originated at.

2.11.1 verify_input Exceptions

This method is executed in the API container. If anything goes wrong in this method you will get it as an immediate
response to your /predict POST request.
For example, lets say we make the same POST request as we did before, but we opt out one of the features in the data.
Given the code we supplied verify_input we should get the following response

{
"title": "Bad input format",
"description": "For each example all of the features [['sepal-length', 'sepal-width',
→˓ 'petal-length', 'petal-width']] must be present"
}

2.11.2 load_model Exceptions

If anything went wrong with the load_model method, you will only able to see the traceback and exception on the
logs.
Specifically, the denzel service log is where the model is loaded. In this case the exception can be found through the
logs (to isoltate the relevant container, pass the --service denzel option) or logworker command.
Check them both as the location of the exception is dependent on its type.

2.11.3 process & predict Exceptions

If something went wrong in these methods, it necessarily means you made a successful request and passed the
verify_input method and have received a "SUCCESS" status to your response with a task ID.
process and predict both get executed on the denzel container. If anything goes wrong inside of them it will be most
likely only visible when querying for task status.
For example, if we would forget to import numpy as np even though it is in use in the process method - we will
get a "SUCCESS" response for our POST (because we passed the verify_input method).
But the task will fail after entering the process method - to see the reason, we should query the /status/{task_id} and
we would see the following:

{
"status": "FAILURE",
"result": {"args":["name 'np' is not defined"]}

}

2.12 Deployment

Since denzel is fully containerized it should work on any machine as long as it has docker, docker-compose and
Python3 installed.
Also all of the main cloud service providers already support dockerized appications.

2.12. Deployment 23



denzel Documentation, Release 0.1.5

After completing all the necessary implementations for deployment covered in this tutorial it is best to check that the
system can be launched from scratch.
To do that, we should shutdown while purging all images, and relaunch the project - don’t worry no code is being
deleted during shutdown. This process it to make sure that when we deploy it somewhere else, it will work.
Go to the main project directory and run the following:

$ denzel shutdown --purge

Stopping iris_classifier_denzel_1 ... done
Stopping iris_classifier_monitor_1 ... done
Stopping iris_classifier_api_1 ... done
Stopping iris_classifier_redis_1 ... done
Removing iris_classifier_denzel_1 ... done
Removing iris_classifier_monitor_1 ... done
Removing iris_classifier_api_1 ... done
Removing iris_classifier_redis_1 ... done
Removing network iris_classifier_default
Removing image redis:4
Removing image denzel:1.0.0
Removing image denzel:1.0.0
ERROR: Failed to remove image for service denzel:1.0.0: 404 Client Error: Not Found (
→˓"No such image: denzel:1.0.0")
Removing image denzel
ERROR: Failed to remove image for service denzel:1.0.0: 404 Client Error: Not Found (
→˓"No such image: denzel:1.0.0")

$ denzel launch
Creating network "iris_classifier_default" with the default driver
Pulling redis (redis:4)...
4: Pulling from library/redis
.
.

Note:

The “ERROR: Failed to remove. . . .” can be safely ignored. This is a result of the --purge flag that tells denzel to
remove the denzel image.
Since the image is used by three different containers, it will successfully delete it on the first container but fail on the
other two.

After the relaunching is done check again that all endpoints are functioning as expected - just to make sure.
If all is well your system is ready to be deployed wherever, on a local machine, a remote server or a docker
supporting cloud service.
To deploy it elsewhere simply copy all the contents of the project directory to the desired destination, verify docker,
docker-compose and Python3 are installed, install denzel and call denzel launch from within that directory.
As a matter of fact, we can skip the installing denzel part when we deploy - more about that in the Production section.

24 Chapter 2. Tutorial



denzel Documentation, Release 0.1.5

2.13 Production

Denzel is essentially a docker-compose application, with an accompanying CLI tool to abstract docker and OS
related functionality from the data scientist developing the application.
This means that if you are going to deploy your application on a docker-supporting cloud service, or deliver it to a
production developer the denzel package is no longer mandatory.
Because the contents of the project directory already include the docker-compose.yml, the Dockerfile and
all the code needed to run and manage the application - Any service or person that can deal with docker will be able
to do so.
Denzel is built that way so that going into production, more advanced docker management tools (like Kubernetes)
can be used to apply more advanced production techniques like continuous deployment and scaling.

Denzel takes you from a model, to a containerized and deployable application in a data scientist oriented way - once
you have that, the options are endless.

2.14 Deleting

Deleting a denzel project is very simple.
To do so we must call the shutdown command, to remove all of the containers. Optionally we could pass the
--purge flag to remove the underlying images.
Then delete the project directory and the denzel project is fully removed.

2.13. Production 25

https://kubernetes.io/


denzel Documentation, Release 0.1.5

26 Chapter 2. Tutorial



CHAPTER 3

Pipeline Methods

The pipeline methods are the blocks that construct the end-user request flow

Fig. 1: API request flow through the four functions

3.1 load_model

pipeline.load_model()
Load model and its assets to memory

Returns Model, will be used by the predict and process functions

27



denzel Documentation, Release 0.1.5

3.2 verify_input

pipeline.verify_input(json_data)
Verifies the validity of an API request content

Parameters json_data (dict) – Parsed JSON accepted from API call

Returns Data for the the process function

3.3 process

pipeline.process(model, json_data)
Process the json_data passed from verify_input to model ready data

Parameters

• model – Loaded object from load_model function

• json_data – Data from the verify_input function

Returns Model ready data

3.4 predict

pipeline.predict(model, data)
Predicts and prepares the answer for the API-caller

Parameters

• model – Loaded object from load_model function

• data – Data from process function

Returns Response to API-caller

Return type dict

28 Chapter 3. Pipeline Methods



CHAPTER 4

API Endpoints

Denzel exposes three different endpoints for end users.
All endpoints are relative to the host. For example if deployed locally on the default port the endpoint /info means
localhost:8000/info

Endpoints

• /info

• /predict

• /status/{task_id}

4.1 /info

GET /info
Endpoint for deployment information. Basically returns the content of app/assets/info.txt.

4.2 /predict

POST /predict
Endpoint for performing predictions

Request Headers

• Accept – application/json

Form Parameters

• body – Data necessary for prediction, should match the interface defined

29

https://tools.ietf.org/html/rfc7231#section-5.3.2


denzel Documentation, Release 0.1.5

Status Codes

• 200 OK – Request accepted and entered the task queue

• 400 Bad Request – Failed to in the reading / verification process.

4.3 /status/{task_id}

GET /status/(str: task_id)
Endpoint for checking a task status

Parameters

• task_id – Task ID

30 Chapter 4. API Endpoints

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1


CHAPTER 5

Command Line Interface (CLI)

Denzel comes with a CLI for the developers use.
At any moment you can use the --help flag to see the help menu

$ denzel --help

Usage: denzel [OPTIONS] COMMAND [ARGS]...

Options:
--help Show this message and exit.

Commands:
launch Builds and starts all services
logs Show service logs
logworker Show worker log
restart Restart services
shell Connect to service bash shell
shutdown Stops and deletes all services
start Start services
startproject Builds the denzel project skeleton
status Examine status of services
stop Stop services
updatereqs Update service according to requirements.txt

For command specific help you can follow a command with the --help flag (ex. denzel launch --help)

Commands

• startproject

31



denzel Documentation, Release 0.1.5

• launch

• shutdown

• start

• stop

• restart

• status

• logs

• logworker

• shell

• updatereqs

Note: Except from the startproject command, all other commands must be executed from within project directory

5.1 startproject

Usage: denzel startproject NAME

Builds the denzel project skeleton.

NAME
Name of the project

--gpu|--no-gpu
Support for NVIDIA GPU

Default: --no-gpu

5.2 launch

Usage: denzel launch [OPTIONS]

Builds and starts all services.

--api-port <INTEGER>
API endpoints port

Default: 8000

--monitor-port <INTEGER>
Monitor UI port

Default: 5555

5.3 shutdown

Usage: denzel shutdown [OPTIONS]

32 Chapter 5. Command Line Interface (CLI)



denzel Documentation, Release 0.1.5

Stops and deletes all services, if you wish only to stop use the stop command.

--purge|--no-purge
Discard the docker images

Default: --no-purge

5.4 start

Usage: denzel start

Start services

5.5 stop

Usage: denzel stop

Stop services

5.6 restart

Usage: denzel restart

Restart services (equal to calling stop and then start).

5.7 status

Usage: denzel status [OPTIONS]

Examine status of services and worker. Use this to monitor the status of your project.

--live|--no-live
Live status view

Default: --no-live

5.8 logs

Usage: denzel logs [OPTIONS]

Show service logs

--service [api|denzel|monitor|redis|all]
Target service

Default: all

--live|--no-live
Follow logs output

Default: --no-live

5.4. start 33



denzel Documentation, Release 0.1.5

5.9 logworker

Usage: denzel logworker [OPTIONS]

Show worker log

--live|--no-live
Follow logs output

Default: --no-live

5.10 shell

Usage: denzel shell [OPTIONS]

Connect to service bash shell. This is only for advanced usage, shouldn’t be used in standard scenarios.

--service [api|denzel|monitor|redis]
Target service

Default: denzel

5.11 updatereqs

Usage: denzel updatereqs

Update services according to requirements.txt. This command always uses the pip --upgrade flag, so
requirements will always be updated to the latest version. If you wish to install a specific version, specify it in the
requirements.txt file. This command will initiate a restart so updates will apply.

34 Chapter 5. Command Line Interface (CLI)



CHAPTER 6

Showcase

Deployment with denzel is very simple.
Assuming we have saved to disk an already trained model with less than 60 lines you can have it deployed with the
following features:
1. Expose an API for users to use your model
2. Allow users to check their prediction request status through API requests
3. Monitor the performance of your deployment through Flower UI
4. Fully containerized system so it could be deployed anywhere

Here is an example of all the code necessary to deploy the Iris classifier from the tutorial.

import pickle
import numpy as np

FEATURES = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width']

# -------- Handled by api container --------
def verify_input(json_data):

""" Verifies the validity of an API request content """

# callback_uri is needed to sent the responses to
if 'callback_uri' not in json_data:

raise ValueError('callback_uri not supplied')

# Verify data was sent
if 'data' not in json_data:

raise ValueError('no data to predict for!')

# Verify data structure
if not isinstance(json_data['data'], dict):

raise ValueError('jsondata["data"] must be a mapping between unique id and
→˓features')

(continues on next page)

35

https://flower.readthedocs.io/en/latest/screenshots.html


denzel Documentation, Release 0.1.5

(continued from previous page)

# Verify data scheme
for unique_id, features in json_data['data'].items():

feature_names = features.keys()
feature_values = features.values()

# Verify all features needed were sent
if not all([feature in feature_names for feature in FEATURES]):

raise ValueError('For each example all of the features [{}] must be
→˓present'.format(FEATURES))

# Verify all features that were sent are floats
if not all([isinstance(value, float) for value in feature_values]):

raise ValueError('All feature values must be floats')

return json_data

# -------- Handled by denzel container --------
def load_model():

""" Load model and its assets to memory """
with open('./app/assets/iris_svc.pkl', 'rb') as model_file:

loaded_model = pickle.load(model_file)

return loaded_model

def process(model, json_data):
""" Process the json_data passed from verify_input to model ready data """

# Gather unique IDs
ids = json_data['data'].keys()

# Gather feature values and make sure they are in the right order
data = []
for features in json_data['data'].values():

data.append([features[FEATURES[0]], features[FEATURES[1]],
→˓features[FEATURES[2]], features[FEATURES[3]]])

data = np.array(data)

return ids, data

def predict(model, data):
""" Predicts and prepares the answer for the API-caller """

# Unpack the outputs of process function
ids, data = data

# Predict
predictions = model.predict(data)

# Pack the IDs supplied by the end user and their corresponding predictions in a
→˓dictionary

response = dict(zip(ids, predictions))

(continues on next page)

36 Chapter 6. Showcase



denzel Documentation, Release 0.1.5

(continued from previous page)

return response

37



denzel Documentation, Release 0.1.5

38 Chapter 6. Showcase



CHAPTER 7

Development State

Denzel is supported by Data Science Group Ltd. and is promised to be kept on open source.
Denzel right now is on alpha. This means that it is fully operational and new features and support will be added to it
before moving on to a beta release.

7.1 Upcoming Features

39

http://www.datascience.co.il/


denzel Documentation, Release 0.1.5

40 Chapter 7. Development State



HTTP Routing Table

/info
GET /info, 29

/predict
POST /predict, 29

/status
GET /status/(str:task_id), 30

41



denzel Documentation, Release 0.1.5

42 HTTP Routing Table



Index

Symbols
–api-port <INTEGER>

command line option, 32
–gpu|–no-gpu

command line option, 32
–live|–no-live

command line option, 33, 34
–monitor-port <INTEGER>

command line option, 32
–purge|–no-purge

command line option, 33
–service [api|denzel|monitor|redis|all]

command line option, 33
–service [api|denzel|monitor|redis]

command line option, 34

C
command line option

–api-port <INTEGER>, 32
–gpu|–no-gpu, 32
–live|–no-live, 33, 34
–monitor-port <INTEGER>, 32
–purge|–no-purge, 33
–service [api|denzel|monitor|redis|all], 33
–service [api|denzel|monitor|redis], 34

L
load_model() (in module pipeline), 27

N
NAME, 32

P
predict() (in module pipeline), 28
process() (in module pipeline), 28

V
verify_input() (in module pipeline), 28

43


	Introduction
	Tutorial
	Pipeline Methods
	API Endpoints
	Command Line Interface (CLI)
	Showcase
	Development State
	HTTP Routing Table

